Hidden Markov gating for prediction ofchange points in switching

نویسندگان

  • Stefan Liehr
  • Klaus Pawelzik
  • Jens Kohlmorgen
  • Steven Lemm
چکیده

The prediction of switching dynamical systems requires an identiication of each individual dynamics and an early detection of mode changes. Here we present a uniied framework of a mixtures of experts architecture and a generalized hidden Markov model (HMM) with a state space dependent transition matrix. The specialization of the experts in the dynamical regimes and the adaptation of the switching probabilities is performed simultaneously during the training procedure. We show that our method allows for a fast on{line detection of mode changes in cases where the most recent input data together with the last dynamical mode contain suucient information to indicate a dynamical change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hidden Markov gating for prediction of change points in switching dynamical systems

The prediction of switching dynamical systems requires an identi cation of each individual dynamics and an early detection of mode changes. Here we present a uni ed framework of a mixtures of experts architecture and a generalized hidden Markov model (HMM) with a state space dependent transition matrix. The specialization of the experts in the dynamical regimes and the adaptation of the switchi...

متن کامل

Hidden Markov Mixtures of Experts for Prediction of Non{stationary Dynamics

The prediction of non{stationary dynamical systems may be performed by identifying appropriate sub{dynamics and an early detection of mode changes. In this paper, we present a framework which uniies the mixtures of experts approach and a generalized hidden Markov model with an input{dependent transition matrix: the Hidden Markov Mixtures of Experts (HMME). The gating procedure incorporates stat...

متن کامل

Segmentation of switching dynamics with a Hidden Markov Model of neural prediction experts

We discuss a framework for modeling the switching dynamics of a time series based on hidden Markov models (HMM) of prediction experts, here neural networks. Learning is treated as a maximum likelihood problem. In particular, we present an Expectation-Maximization (EM) algorithm for adjusting the expert parameters as well as the HMM transition probabilities. Based on this algorithm, we develop a...

متن کامل

Prediction based channel allocation performance for cognitive radio

The interdependency, in a cognitive radio (CR) network, of spectrum sensing, occupancy modelling, channel switching and secondary user (SU) performance, is investigated. Achievable SU data throughput and primary user (PU) disruption rate have been examined for both theoretical test data as well as data obtained from real-world spectrum measurements done in Pretoria, South Africa. A channel swit...

متن کامل

Nonlinear gated experts for time series: discovering regimes and avoiding overfitting

In the analysis and prediction of real-world systems, two of the key problems are nonstationarity (often in the form of switching between regimes) and overfitting (particularly serious for noisy processes). This article addresses these problems using gated experts, consisting of a (nonlinear) gating network, and several (also nonlinear) competing experts. Each expert learns to predict the condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999